Answer:
a) P [Z < 5.79] Â = Â 7.49 %
b) P [ Z > 7.46 ] = 82.38 %
c) P [ Z > 6.65 ] Â = 91.68 %
Step-by-step explanation:
Normal Distribution
Population Mean   μ₀  = 6.8 cm
Standard Deviation  of population   σ = 0,7 cm
a) P [ Z < 5.79 ] Â = Â ??
z value ?
z = ( 5,79 - 6,8 ) / 0,7   ⇒  z = - 1.01 / 0,7  ⇒  z = - 1.442
From z table we get:
z =  - 1.442    ⇒  P [Z < 5.79]  =  0.0749   or
P [Z < 5.79] Â = Â 7.49 %
b) Â P [ Z > 7.46 ]
z =  ( 7.46 - 6,8 ) / 0,7   ⇒  z = 0.66 / 0.7  ⇒ z = 0.942
From z table
P [ Z > 7.46 ] = 0.8238   or   P [ Z > 7.46 ] = 82.38 %
c) P [ Z > 6.65] Â
z  = ( 6.65 - 6.8 ) / 0.7    ⇒  z  = - 0,15 / 0.7   ⇒ z = - 0.214
From table we get area between 6.65 and the mean, therefore we have to add  ( 0.5 ) half of total area
Then from z table Â
z = - 0,214     ⇒  0,4168
Then P [ Z > 6.65 ] Â = 0,4168 + 0.5
P [ Z > 6.65 ] Â = 0.9168 Â Â or
P [ Z > 6.65 ] Â = 91.68 %
P [ Z > 6,65 ] = 0,5 +