Answer:
The minimum number of staffs that could be hired is 4
The optimal number of stuff is 6 and  The total cost per hour is $114.14
Explanation:
Average arrival rate, λ = 190 per hour
Average service rate, μ = 1 in 1 minute = 60 per hour
The minimum number of servers required for a stable queuing system
= λ/μ
= 190/60
= 3.167
Therefore, The minimum number of staffs that could be hired is 4.
s       P0        Lq        Server cost per hour = s*18
4 Â Â Â Â Â Â 0.029 Â Â Â Â 2.210 Â Â Â Â Â Â Â Â Â Â Â 72 Â
5 Â Â Â Â Â Â 0.039 Â 0.483 Â Â Â Â Â Â Â Â Â Â Â 90
6 Â Â Â Â Â Â 0.041 Â Â Â Â Â 0.137 Â Â Â Â Â Â Â Â Â Â Â 108 Â
Waiting cost per hour = Lq*45 Â Total cost per hour
       99.44                       171.44
       21.72                    111.72
        6.14                        114.14
The total cost is optimal for s = 6.
Therefore, The optimal number of stuff is 6 and  The total cost per hour is $114.14